A micromechanics-based degradation model for composite progressive damage analysis

Author:

Zhang Jianyu1,Zhou Longwei2,Chen Yuli3,Zhao Libin2,Fei Binjun3

Affiliation:

1. College of Aerospace Engineering, Chongqing University, Chongqing, PR China

2. School of Astronautics, Beihang University, Beijing, PR China

3. Institute of Solid Mechanics, Beihang University, Beijing, PR China

Abstract

A new material degradation model only with fundamental material properties required is proposed for composite progressive damage analysis based on micromechanics. For different failure modes, the effects of fiber and/or matrix damage on the composite material properties are explored, from which the material degradation factors for these failure modes are deduced. The material degradation model is then implemented for progressive damage analyses, using user subroutines in the commercial code ABAQUS®, accompanying with a modified Hashin type failure criterion and finite element models for six commonly used double-lap composite bolted joints with various layups, geometry dimensions, and fasteners. The numerical predictions of failure loads, failure patterns, and load–displacement curves are compared with results obtained from static tests and further ultrasonic C-scan detection. Good agreements between numerical failure predictions and experimental outcomes indicate the effectiveness and suitability of the proposed model for progressive damage analyses of composite bolted joints.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3