Biopolymer nanocomposites of polyhydroxybutyrate and cellulose nanofibrils: Effects of cellulose nanofibril loading levels

Author:

Aydemir Deniz12ORCID,Gardner Douglas J2

Affiliation:

1. Forest Industrial Engineering, Faculty of Forestry, Bartin University, Turkey

2. Advanced Structures and Composites Center, University of Maine, USA

Abstract

In this paper, the effect of cellulose nanofibrils (CNFs) loading levels on the conventional and dynamic mechanical, morphological, thermal and rheological properties of the polyhydroxybutyrate (PHB) biopolymers were studied. According to the results, adding CNFs from 1% to 20% generally didn’t provide any improvement in the flexural, tensile and izod impact strength attributable to void formation and pulling out and agglomeration of nanofibrils in the matrix, which was observed during morphological characterization, however adding CNFs substantially increased both flexural and tensile modulus of elasticity. Thermal analysis showed that adding CNFs generally decreased degradation at high temperatures of the biopolymer nanocomposites (BNCs) The addition of CNFs at 1, 10 and 20% increased the E' and E'' of neat PHB but the other loadings decreased them, and tan delta increased with CNF loadings of 3, 5, 10 and 20%, and finally adding CNFs didn’t change the rheological behavior of the composites.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3