Fatigue of fibre-reinforced plastics due to cryogenic thermal cycling

Author:

Lüders Caroline12,Sinapius Michael12

Affiliation:

1. Institute of Adaptronics and Function Integration, Technische Universität Braunschweig, Germany

2. Institute of Composite Structures and Adaptive Systems, German Aerospace Center, Germany

Abstract

Due to the different thermal expansion of the constituent materials, cyclic thermal loading of fibre reinforced plastics induces alternating stresses in the material at two scales: (1) at the microscale (level of fibre–matrix-interaction) and (2) at the macroscale (level of the multidirectional laminate). Especially the effect of the thermal-induced stresses at the microscale is not comprehensively investigated yet. In the present paper, the effects of both scales are analysed. For the investigation of the microscale effect, unidirectional laminates are thermally cycled between 293 K and 90 K up to 1000 times. Afterwards, by mechanical tests at room temperature, the elasticity and strength properties in the different material directions are determined as function of the number of thermal cycles. Additionally, thermally cycled specimens are microscopically investigated in order to observe the matrix crack forming process at thermal fatigue loading. Contrary to the expectations, no significant matrix cracking and therefore no significant reduction of the elasticity and strength properties due to the thermal cycling are observed. In order to analyse the effect of the superposition of the thermal-induced stresses on micro- and macroscale, cross-ply laminates are investigated in the same manner. In these laminates matrix cracks are detected after 1000 cycles, which, however, do not reduce the stiffness and strength of the cross-ply laminates.

Funder

Deutsche Forschungsgemeinschaft

Bundesministerium für Wirtschaft und Technologie

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3