A Micromechanics Model for the Electrical Conductivity of Nanotube-Polymer Nanocomposites

Author:

Seidel Gary D.1,Lagoudas Dimitris C.2

Affiliation:

1. Department of Aerospace Engineering Texas A&M University College Station, TX 77843-3141, USA

2. Department of Aerospace Engineering Texas A&M University College Station, TX 77843-3141, USA,

Abstract

The introduction of carbon nanotubes (CNTs) into nonconducting polymers has been observed to yield orders of magnitude increases in conductivity at very low concentrations of CNTs. These low percolation concentrations have been attributed to both the formation of conductive networks of CNTs within the polymer and to a nanoscale effect associated with the ability of electrons to transfer from one CNT to another known as electron hopping. In the present work, a micromechanics model is developed to assess the impact of the effects of electron hopping and the formation of conductive networks on the electrical conductivity of CNT-polymer nanocomposites. The micromechanics model uses the composite cylinders model as a nanoscale representative volume element where the effects of electron hopping are introduced in the form of a continuum interphase layer, resulting in a distinct percolation concentration associated with electron hopping. Changes in the aspect ratio of the nanoscale representative volume element are used to reflect the changes in nanocomposite conductivity associated with the formation of conductive networks due to the formation of nanotube bundles. The model results are compared with experimental data in the literature for both single- and multi-walled CNT nanocomposites where it is observed that the model developed is able to qualitatively explain the relative impact of electron hopping and nanotube bundling on the nanocomposite conductivity and percolation concentrations.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3