Numerical lamb wave modeling and analysis for cure cycle shortening of carbon fiber composites

Author:

Mahfoud Elie1ORCID,Harb Mohammad1

Affiliation:

1. Laboratory of Smart Structures and Structural Integrity, Department of Mechanical Engineering, American University of Beirut, Beirut, Lebanon

Abstract

Advanced carbon fiber composites are renowned for their great tenacity as, although being thin, they provide great strength, keeping structures light in weight. The composites industry struggles with longer cure times when compared to other traditional material production. In this study, a computational model for a carbon fiber reinforced polymers (CFRP) plate is developed to imitate experimental monitoring of its cure cycle and degree of cure. The CFRP storage modulus is measured during the curing cycle with the aid of dynamic mechanical analysis, and its trend is incorporated into COMSOL combined structural and electrostatics multiphysics to replicate the same mechanical fluctuations during oven curing. Then, Lamb waves are excited and sensed via sandwiched piezoelectric transducers in a reusable Polytetrafluoroethylene sensing film to monitor the structural health of the structure. Minimum viscosity, gelation and vitrification are cure parameters observed from analyzing voltage and velocity curves of the A0 mode of the sensed signal. The cure cycle is trimmed, and the same cure parameters are shown offset by the 1 h deducted, proving that the numerical model is valid. Further analysis of the numerical voltage and velocity curves suggests an additional cure parameter defined as “gelation initiation” when compared directly to the experimental trends. Additionally, the decomposition of different wavefield modes is scrutinized to describe their scattering throughout the layered structure. Results show a new entrapped antisymmetric mode appearing inside the CFRP laminate at the start of the cure, which suggests that the previously studied A0 mode had been initially converted from the CFRP S0 mode.

Funder

University Research Board

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3