Development of novel high Tg polyimide-based composites. Part II: Mechanical characterisation

Author:

Tsampas Spyros1,Fernberg Patrik1,Joffe Roberts1

Affiliation:

1. Division of Materials Science, Group of Polymeric Composite Materials, Luleå University of Technology, Sweden

Abstract

In this study, the mechanical performance assessment of a newly developed carbon fibre-reinforced polyimide composite system T650/NEXIMID® MHT-R is presented. This system was subjected to a series of mechanical tests at ambient and elevated temperature (320℃) to determine basic material properties. Moreover, an additional test was conducted, using a T650/NEXIMID® MHT-R laminate in which the fibre sizing was thermally removed prior to laminate manufacturing, to investigate the effect of fibre treatment on mechanical performance. The experimental results indicated that the T650/NEXIMID® MHT-R composites along with exceptionally high Tg (360–420℃) exhibited competitive mechanical properties to other commercially available polyimide and epoxy-based systems. At elevated temperature, the fibre-dominated properties were not affected whilst the properties defined by matrix and fibre/matrix interface were degraded by approximately 20–30%. Finally, the fibre sizing removal did not affect the tensile and compressive strength, however, the shear strength obtained from short-beam shear test was deteriorated by approximately 15%.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Influence of Ethynyl In-Chain Crosslinkers on the Properties of 6FDA-Based Polyimides;Materials;2022-12-24

2. Experimental and numerical study on open-hole tension/compression properties of carbon-fiber-reinforced thermoplastic laminates;Journal of Composite Materials;2022-04-22

3. Thermal oxidative aging of satin weave and thin‐ply polyimide composites;Polymer Composites;2022-03-03

4. Thermocontrol for a space tourism vehicle model;XLIV ACADEMIC SPACE CONFERENCE: dedicated to the memory of academician S.P. Korolev and other outstanding Russian scientists – Pioneers of space exploration;2021

5. Performance of high-temperature thermosetting polyimide composites modified with thermoplastic polyimide;Polymer Testing;2020-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3