Design, experimental demonstration, and validation of a composite morphing space radiator

Author:

Walgren Patrick1ORCID,Nevin Sean1,Hartl Darren1

Affiliation:

1. Department of Aerospace Engineering, Texas A&M University, College Station, TX, USA

Abstract

Future manned space missions will require thermal control systems that can adapt to larger fluctuations in temperature and heat flux exceeding the capabilities of current state-of-the-art technologies. Specifically, these missions will demand novel space radiators that can vary the system heat rejection rate to maintain the crew cabin at habitable temperatures throughout the entire mission. While current systems can provide a turndown ratio (defined as the ratio of maximum to minimum heat rejection rates) of 3:1 under adverse conditions, future missions are projected to demand thermal control systems that can provide a turndown ratio of more than 6:1. A novel morphing radiator concept autonomously varies the system heat rejection rate by altering the shape of the panel exposed to space, where composite materials can provide an ideal compromise between thermal conductivity, restorative stiffness and deformation capability. Shape change is accomplished through the use of shape memory alloys, a class of active materials that exhibit thermomechanically driven phase transformations and can be used as simultaneous sensors and actuators in thermal control applications. This work details progress towards testing and modeling a spaceflight-quality, high turndown ratio morphing radiator prototype in a relevant thermal environment. A prototype composite morphing radiator with shape memory alloy strip actuators and high performance thermal coatings achieved a turndown ratio of 7.2:1, while an associated multi-physical model thereof has been shown to capture all major effects and will enable future design improvements.

Funder

Johnson Space Center

National Aeronautics and Space Administration

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3