An experimental study on the bearing strength of pin-loaded ceramic particles filled woven glass/epoxy composites

Author:

Sayer Metin1ORCID

Affiliation:

1. Department of Mechatronics Engineering, Pamukkale University, Kinikli Campus, Denizli, Türkiye

Abstract

The present study experimentally investigates the effect of various ceramic particles and different particle weight fractions on the bearing strength and failure modes of pinned joints in woven glass/epoxy composite plates. The composite plates are filled with Silicon Carbide (SiC), Aluminum Oxide (Al2O3) and Boron Carbide (B4C) ceramic particles at 5%, 10% and 15% weight fractions. Tensile tests were carried out on single pinned joints in woven glass/epoxy composite specimens. Accordingly, the effects of ceramic particles, particle weight fractions and pin joint geometry were evaluated on the bearing strength and the failure modes. The damaged specimens were examined with load–pin displacement curves, visual and scanning electron microscope (SEM). The results showed that the bearing strength and failure mode were considerably affected by the ceramic particles, the particle weight fractions and the geometric dimensions. It was found that the addition of the ceramic particles into composites improved the bearing strengths of pinned joints in the composites for all weight fractions compared to the unfilled composite. The highest bearing strengths were obtained for composites filled with 10 wt.% particles. As a result, the increase in the bearing strength is almost 43% for composites filled with SiC, 53% filled with Al2O3 and 47% filled with B4C compared to the unfilled composite, for ratio e/d = 3.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3