Affiliation:
1. School of Mechanical and Aerospace Engineering, Gyeongsang National University, Jinju, Korea
Abstract
This study presented the details of multi-wall carbon nanotubes (MWCNTs)-modified resin injection repair aiming to enhance the mechanical properties, considering the flexural and compression behavior. The resin injection of epoxy resin dispersed with MWCNTs (0.1, 0.3, and 0.5 wt.%) as low viscosity resin that delaminated composite structure repair was conducted using a developed vacuum-based resin injection system at 80°C with constant injection pressure. The quasi-static indentation (QSI) method with a circular window was applied to create the barely visible impact damage (BVID) in the laminate specimen and thus obtain the delamination damage with reproducibility. The flexural strength and compression after impact (CAI) test were conducted on repaired carbon fiber reinforced laminates to assess the effect of the dispersion of the MWCNTs in the epoxy resin injection approach compared to neat epoxy resin. The mechanical test results exhibited that the recovery rate was better improved in the case of the modified resin infiltration approach in laminate composites dispersed with nanoparticles. It was attributed to their more enhanced strengthening mechanisms under effective interaction in mixed interface of fiber-matrix-MWCNTs, mainly attributing to bridge connection and stronger interfacial adhesion properties.
Funder
National Research Foundation of Korea
Subject
Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献