45 Flexure Test for Measurement of In-Plane Shear Modulus

Author:

Mujika F.1,Mondragon I.2,Berglund L. A.,Varna J.3

Affiliation:

1. Departamento de Ingeniería Mecánica, Escuela de Ingeniería Técnica Industrial, Universidad del País Vasco/Euskal Herriko Unibertsitatea, Avda. Felipe IV, 20011 San Sebastián/Donostia, Spain

2. Departamento de Ingeniería Química y del Medio Ambiente Escuela de Ingeniería Técnica Industrial, Universidad del País Vasco/Euskal Herriko Unibertsitatea, Avda. Felipe IV, 20011 San Sebastián/Donostia, Spain

3. Division of Polymer Engineering, Lulea University of Technology, Lulea, Sweden

Abstract

A new method to obtain the in-plane shear modulus GLT for unidirectional oriented composite materials is proposed. The method is based on an original analytic way for calculating middle point displacement in a 3-point flexure test. The bending–twisting coupling effects in such a test induce the lift-off of the specimen at the fixture supports for some geometrical conditions. Thereby, contact points are located at two opposite points of the specimen. Consequently, new bending moments along the width of the specimen and twisting moments appear. By supposing resultant moments and shear forces per unit length are uniformly distributed, these distributions are calculated for static conditions along longitudinal and transverse cross sections of the specimen. After having expressed strain energy as a function of resultant moments and resultant shear forces per unit length, Second Castigliano’s theorem is applied in order to calculate the middle point displacement. No similar analytic way has been encountered in classical laminated beams theory or in classical laminated plates theory. The displacement obtained in this work and the one obtained from classical laminated beams theory are particularised to the case of 45 fibre orientation. GLT expressions have been derived from those displacement expressions in three ways: two of them from the solution of this work, not considering and considering shear effects, respectively, and the third one from displacement obtained from classical laminated beams theory. Experiments have been made for different geometric conditions in order to test the influence of geometric parameters in experimental results. For span-to-width ratios up to two, the values obtained are quite constant and agree well with the in-plane shear modulus value obtained by the material manufacturer using 45 tensile test.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3