Mechanical and Fracture Toughness Behavior of TPNR Nanocomposites

Author:

Ahmad S.H.1,Rasid R.2,Surip S.N.3,Anuar H.4,Czigany T.5,Abdul Razak S.B.6

Affiliation:

1. Department of Material Science, School of Applied Physics, Universiti Kebangsaan Malaysia, 43650 Bangi Selangor, Malaysia,

2. Department of Material Science, School of Applied Physics, Universiti Kebangsaan Malaysia, 43650 Bangi Selangor, Malaysia

3. Department of Bio Composites Technology, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Malaysia

4. Department of Manufacturing & Material Engineering, International Islamic University Malaysia, 54200 Kuala Lumpur, Malaysia

5. Department of Polymer Engineering, Budapest University of Technology and Economics, Muegyetem rkp 3, Budapest, Hungary

6. Biotechnology & Strategic Research Unit, Malaysian Rubber Board 47000 Sungai, Buloh, Malaysia

Abstract

Thermoplastic natural rubber (TPNR) nanocomposites containing organophilic layered silicates were prepared by melt blending method at 180°C using internal mixer (Haake 600P). The aim of this study is to determine the influence of the organoclay filler on the mechanical and fracture properties. In this study, two mixing methods were employed to incorporate filler into matrix, namely the direct (DM) and indirect (IDM) method. The mechanical properties of TPNR nanocomposites were studied using tensile, flexural, and impact tests. The tensile and flexural tests revealed that the optimum loading of organoclay was at 4 wt% using the indirect method of mixing. Plane stress fracture toughness of thermoplastic natural rubber (TPNR) nanocomposite was determined by the essential work of fracture (EWF) concept using tensile-loaded deeply double-edge notched (DDEN-T) specimens. The EWF measurements indicated that the specific essential work of fracture (we) decreased in the presence of nanoclay. Nevertheless, these TPNR nanocomposites met the basic requirement of the EWF concept of full ligament yielding, which was marked by a load drop in the force—displacement curves of the DDEN-T specimens.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3