Porosity Reduction in the High-Speed Processing of Glass-Fiber Composites by Resin Transfer Molding (RTM)

Author:

Barraza Harry J.1,Hamidib Youssef K.,Aktasb, Levent2,O’Rear Edgar A.1,Altan M. C.2

Affiliation:

1. School of Chemical Engineering and Materials Science

2. School of Aerospace and Mechanical Engineering University of Oklahoma, Norman, OK 73019, USA

Abstract

High-speed processing is essential to achieve lower production cost in the fabrication of fiber-reinforced composites with the current liquid molding practices. A major consequence of increasing the resin injection velocity is the formation of defects such as voids and dry regions that decrease the load-bearing capability of the composite. Void formation mechanisms and analytical predictions of the detrimental effect of porosity on the structural integrity of molded parts have been studied extensively. In contrast, knowledge of void removal strategies is very limited. In this investigation, various postfill pressure levels were applied to disk-shaped random-mat glass/epoxy parts molded at high volumetric flow rates as a method to reduce their voidage content. Quantitative image analysis over cross-sections cut from these composites revealed that significant changes in porosity concentration take place with the postfill pressure. For instance, overall void content dropped more than 70% with the application of a postfill pressure as low as 300 kPa. Other important void morphometry characteristics such as void shape, size, and spatial distribution could also be manipulated by this method. As the packing pressure increases, large voids gradually disappear, and at the same time, the small circular voids are mobilized towards radial locations near the vents. In addition to this spatial voidage gradient in the radial direction, voidage gradient also exists through the specimen thickness. It seems that higher front velocities promote the appearance of secondary flow phenomena inside the mold cavity (e.g. microfountain flow), which may explain why more voids tend to concentrate at the surface of the specimen irrespective of the postfill pressure level reached inside the mold.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3