Effects of fibre weight fraction on the mechanical properties of bio-Composite reinforced with Alfa fibres: Experimental and numerical investigation

Author:

Boukhoulda A1ORCID,Bendine K1,Boukhoulda FB1,Bellali MA2

Affiliation:

1. Structures and Solid Mechanical Laboratory, Mechanical Department, DjillaliLiabes University of SidiBel-Abbes, SidiBel-Abbes, Algeria

2. Laboratory of Mechanics and Physics of Material Djillali Liabes University, SidiBel-Abbes, Algeria

Abstract

This study is dedicated to conducting a comprehensive examination, both experimentally and numerically, to characterize the mechanical properties of a composite material composed of Alfa fibres and unsaturated polyester resin. In pursuit of this objective, we diligently prepared composite specimens in accordance with the ASTM D3379-75 standardization. The Alfa fibres used were prepares using a purely natural-based extraction technique, which retains approximately 78% of the composite's performance achieved through chemical treatment. The resulting composite consists of polyester resin reinforced with varying weight fractions of fibres, ranging from 0 to 18%.The test results of the manufactured bio-composite show that specimens with an 18% weight fraction offer a tensile strength of 49.749 MPa, whereas specimens with a 10% weight fraction exhibit a strength of 44.312 MPa. Additionally, the specimens with 18% fibre reinforcement exhibit a net increase in Young's modulus by 46% compared to the fibre-free composite, with Young's modulus ranging from 1469.66 MPa to 2726 MPa. When compared with composites based on fibre glass, the introduced bio-composite with 18% Alfa fibres exhibits similar stiffness to that of glass fibres. Additionally, the outcomes from the Finite Element Model (FEM) reveal a remarkable agreement with the experimental data, underscoring the practical applicability of the proposed methodology and tools for accurately simulating tensile tests in composite structures.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3