A comparative study of waste eggshells, CaCO3, and SiC-reinforced AA2014 green metal matrix composites

Author:

Dwivedi Shashi Prakash12,Sharma Satpal1,Mishra Raghvendra Kumar1

Affiliation:

1. School of Engineering, Gautam Buddha University, India

2. Noida Institute of Engineering Technology, India

Abstract

The influences of weight percentage of different reinforcement particles such as SiC particles, waste uncarbonized eggshell particles, carbonized eggshell particles, and CaCO3 powder were compared in the processing of aluminium-based metal matrix composite. The results revealed that by the addition of SiC particles up to 10 wt.% and waste eggshell particles up to 12.5 wt.% in AA2014 matrix alloy, the tensile strength, hardness, and fatigue strength increased. Toughness and ductility decreased by the addition of SiC and eggshell particles in AA2014 matrix alloy. Corrosion rate decreased by the addition of SiC particle up to 7.5 wt.% and eggshell particles up to 12.5 wt.%. Results showed that hardness and heat-treatable properties are improved after the addition of SiC reinforcement particles in AA2014 aluminium alloy as compared to eggshell particles. However, porosity and overall cost increased after addition of SiC particles in AA2014 alloy. Corrosion rate increased after the heat treatment for all reinforced metal matrix composite. These results showed that using the carbonized eggshell as reinforcement in the AA2014 alloy gave better physical properties at lower cost as compared to SiC particles. Proper wettability was observed between matrix and reinforcement material for both carbonized eggshell particles and SiC particles. No wettability was observed between AA2014 alloy and CaCO3 reinforcement particles. Poor wettability reduced the mechanical properties of AA2014/CaCO3 metal matrix composite.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3