Defining relationships between geometry and behavior of bistable composite laminates

Author:

Phatak Salil1,Myers Oliver J1ORCID,Li Suyi1,Fadel George1

Affiliation:

1. Department of Mechanical Engineering, Clemson University, SC, USA

Abstract

Bistability is exhibited by an object when it can be resting in two stable equilibrium states. Certain composite laminates exhibit bistability by having two stable curvatures of opposite sign with the two axes of curvature perpendicular to each other. These laminates can be actuated from one state to the other. The actuation from the original post-cure shape to the second shape is called as ‘snap-through’ and the reverse actuation is called as ‘snap-back’. This phenomenon can be used in applications for morphing structures, energy harvesting, and other applications where there is a conflicting requirement of a structure that is load-carrying, light, and shape-adaptable. MW Hyer first reported this phenomenon in his paper in 1981. He found that thin unsymmetric laminates do not behave according to the predictions of the Classical Lamination Theory (CLT). The CLT is a linear theory and predicts the post-cure shape of thin unsymmetric laminates to be a saddle. MW Hyer developed a non-linear method called the “Extended Classical Lamination Theory” which accurately predicted the laminate to have two cylindrical shapes. Since then, a number of researchers have tried to identify the key parameters affecting the behavior of such laminates. Geometric parameters such as stacking sequence, fibre orientation, cure cycle, boundary conditions, and force of actuation, have all been studied. The objective of this research is to define a relation between the length, width and thickness of square and rectangular laminates required to achieve bistability. Using these relations, a 36 in × 36 in bistable laminate is fabricated with a thickness of 30 CFRP layers. Also, it is proved that a laminate does not lose bistability with an increase in aspect ratio, as long as both sides of the rectangular laminate are above a certain ‘critical length’. A bistable laminate with dimensions of 2 in × 50 in is fabricated. Further, for laminates that are bistable, it is necessary to be able to predict the curvature and force required for actuation. Therefore, a method is developed which allows us to predict the curvature of both stable shapes, as well as the force of actuation of laminates for which the thickness and dimensions are known. Finite Element Analysis is used to carry out the numerical calculations, which are validated by fabricating laminates. The curvature of these laminates is measured using a profilometer and the force of actuation is recorded using a universal test set-up.

Funder

National Science Foundation

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3