Incorporation of compaction effects in the automated generation of 3D woven composites representative volume elements by geometrical modelling

Author:

Gulfo Hernández Luis F1ORCID,Wintiba Badadjida1,Li Anqi1,Z Berke Péter1,Massart Thierry J1ORCID

Affiliation:

1. Building, Architecture and Town Planning department (BATir), Structural and Material Computational Mechanics Research Unit (SMC), Université Libre de Bruxelles (ULB), Bruxelles, Belgium

Abstract

Advanced 3D woven composites have become an enabling technology in many industrial applications due to their proven benefits, particularly the improvement of the out-of-plane mechanical behavior with respect to other reinforcement schemes. The latter property has been shown to be strongly affected by the effects of compaction during manufacturing. The present study proposes an automated framework, based on heuristic procedures, for the generation of representative volume elements (RVEs) of 3D woven composites, allowing to include global and local geometrical features induced by transverse compaction, such as overall thickness reduction, changes in yarn cross-sections and consistent global/local fiber fractions. The methodology is illustrated for three types of reinforcement, namely a plain weave, an angular through-thickness interlock and a 3D orthogonal RVE. The resulting geometries generated by the proposed method compare favourably with typical observations from the literature in a quantitative manner. Finally, the proposed framework is integrated with a previously developed meshing strategy to allow damage studies for a selected architecture (plain weave) under torsional loading, presenting a complete computational chain by building cohesive zone finite element models from compacted RVEs. The torque-angle response curves obtained after the damage simulations show a decrease in stiffness and an increase of damage levels with compaction, which is in line with the expectations.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3