Design of composite lattice materials combined with fabrication approaches

Author:

Xu Jun1234,Wu Yaobo12,Gao Xiang12,Wu Huaping5,Nutt Steven6,Yin Sha123ORCID

Affiliation:

1. Department of Automotive Engineering, School of Transportation Science and Engineering, Beihang University, China

2. Advanced Vehicle Research Center (AVRC), Beihang University, China

3. State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi’an Jiaotong University, China

4. State Key Laboratory for Automotive Safety and Energy, Tsinghua University, China

5. Key Laboratory of E&M (Zhejiang University of Technology), Ministry of Education & Zhejiang Province, China

6. Department of Chemical Engineering and Materials Science, University of Southern California, USA

Abstract

Lattice materials can be designed through their microstructure while concurrently considering fabrication feasibility. Here, we propose two types of composite lattice materials with enhanced resistance to buckling: (a) hollow lattice materials fabricated by a newly developed bottom-up assembly technique and the previously developed thermal expansion molding technique and (b) hierarchical lattice materials with foam core sandwich trusses fabricated by interlocking assembly process. The mechanical performance of sandwich structures featuring the two types of lattice cores was tested and analyzed theoretically. For hollow lattice core material, samples from two different fabrication processes were compared and both failed by nodal rupture or debonding. In contrast, hierarchical lattice structures failed by shear buckling without interfacial failure in the sandwich struts. Calculations using established analytical models indicated that the shear strength of hollow lattice cores could be optimized by judicious selection of the thickness of patterned plates. Likewise, the shear strength of hierarchical foam core truss cores could be maximized (with minimal weight) through design of truss geometry. The bottom-up assembly technique could provide a feasible way for mass production of lattice cores, but the design about how to assembly is critical. Hierarchical lattice cores with foam sandwich trusses should be a suitable choice for future lightweight material application.

Funder

Beijing Municipal Science & Technology Commission

National Natural Science Foundation of China

Young Elite Scientist Sponsorship Program by CAST

State Key Laboratory for Strength and Vibration of Mechanical Structures

State Key Laboratory for Automotive Safety and Energy

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3