Energy absorption in carbon fiber honeycomb structures manufactured using a liquid thermoplastic resin

Author:

Khan Tayyab,Aziz Alia Ruzanna1,Irfan Muhammad S1,Cantwell Wesley J1,Umer Rehan1ORCID

Affiliation:

1. Department of Aerospace Engineering, Khalifa University of Science and Technology, Abu Dhabi, UAE

Abstract

In this study, carbon fiber/thermoplastic (Elium®) honeycombs were manufactured using the resin infusion process in a customized metallic mold. Honeycomb cores, based on different carbon fiber layers, were manufactured to achieve four different fiber weight fraction composites. Two different types of specimens, based on a single honeycomb cell and five honeycomb cells, were prepared and subjected to compression loading. The results of these tests were compared with data from similar honeycomb structures based on carbon fiber–reinforced epoxy composite. It has been shown that the compressive strength and the specific energy absorption capacity of the honeycombs increase rapidly with increasing fiber weight fraction. The specific energy absorption capability of the novel thermoplastic honeycomb structures has been shown to be as high as 50 kJ/kg which compares favorably with other energy-absorbing core materials. The thermoplastic honeycomb specimens exhibited a similar specific energy absorption capability and an improved compressive strength compared to their epoxy counterparts. Furthermore, the CF/thermoplastic honeycombs exhibited enhanced structural stability and displayed a more uniform and progressive core failure mode than the longitudinal splitting observed in the CF/epoxy honeycombs. The honeycomb core that exhibited the best performance was then used to manufacture thermoplastic sandwich specimens based on CF/thermoplastic face sheets. Three point bend tests were conducted to determine the flexural strength of the sandwich samples and to identify the failure modes. Optical micrographs revealed that the flexural damage was primarily due to the core crushing and adhesive failure between the core and the composite skins.

Funder

Khalifa University of Science, Technology and Research

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3