Affiliation:
1. School of Mechanical, Aerospace and Systems Engineering, Daejeon, Republic of Korea
2. Agency for Defense Development, Daejeon, Republic of Korea
Abstract
This paper proposes a novel pseudo-elastic model for polymer-bonded explosive considering the Mullins effect for isotropic, incompressible, hyperelastic, particle-filled materials. Polymer-bonded explosive, an energetic material in which small explosive crystals are bonded in a polymer matrix, is known to exhibit highly nonlinear behaviors of deformation such as the Mullins effect of stress softening, hysteresis, residual strain, and frequency-dependent responses. The Ogden-Roxburgh model is modified for the unloading state to describe the Mullins effect accurately, which is the most important unloading behavior of polymer-bonded explosive. Uniaxial compressive loading and unloading tests at quasi-static states were undertaken to obtain the mechanical properties of the polymer-bonded explosive simulants. The pseudo-elastic model by Ogden and Roxburgh is subsequently modified for consistency with the test results of the polymer-bonded explosive simulants for the case in which the Mullins effect is dominant. The predictions from the new model exhibit good agreement with the experimental data, demonstrating that the model properly describes the Mullins effect and the loading-unloading behavior of deformation.
Subject
Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献