Fracture toughness of fiber metal laminates: Carbon nanotube modified Ti–polymer–matrix composite interface

Author:

Truong Hieu TX1,Lagoudas Dimitris C2,Ochoa Ozden O1,Lafdi Khalid3

Affiliation:

1. Department of Mechanical Engineering, Texas A&M University, College Station, TX, USA

2. Department of Aerospace Engineering, Texas A&M University, College Station, TX, USA

3. Mechanical and Aerospace Engineering, University of Dayton, Dayton, OH, USA

Abstract

Multifunctional hybrid composites are proposed as novel solutions to meet the demands in various industrial applications ranging from aerospace to biomedicine. The combination of carbon fiber and/or fabric, metal foil, and carbon nanotubes is utilized to develop such composites. This study focuses on processing and fracture toughness characterization of the carbon fiber-reinforced polymer–matrix composites and the carbon nanotube modified interface between the polymer–matrix composite and titanium foil. Vacuum Assisted Resin Transfer Molding (VARTM) process is used to fabricate the laminate. Double cantilever beam tests at both room temperature and high temperature are conducted to assess the mode I interlaminar fracture toughness. The experimental and characterization efforts suggest that carbon nanotubes improve bonding at the hybrid interface. Simple computational models are developed to assist the interpretation of experimental results and further investigate the damage modes. The numerical results agree well with the limited experiments at crack initiation and furthermore support the absence of mode mixity.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3