Tailoring anisotropic thermal conductivity by varying filler particle organization in nickel-polydimethylsiloxane composites

Author:

Tsai Peiying J1,Pal Souvik1,Ghosh Suvojit1,Puri Ishwar K12ORCID

Affiliation:

1. Department of Mechanical Engineering, McMaster University, Canada

2. Department of Engineering Physics, McMaster University, Canada

Abstract

Anisotropic properties can be imparted to composite materials by arranging filler particles along specific directions inside the polymer matrix. These anisotropic patterns can be produced through dynamic field-assisted assembly of the filler particles during additive manufacturing. Using finite element analysis, we explore how chainlike arrangements of nickel particles embedded in a polydimethylsiloxane matrix modify bulk thermal conductivities in the axial and transverse directions. The axial conductivity increases up to nine times of the matrix conductivity with increasing filler volume fraction. While the axial conductivity decreases with increasing interparticle spacing, the transverse conductivity is uninfluenced. When particles within a chain are arranged in a zigzag pattern, increasing the interparticle zigzag angle decreases axial conductivity but increases transverse conductivity. As that angle increases to ∼55 º, the axial conductivity approaches a minimum, while the transverse conductivity approaches its maximum. An empirical model that includes effects of interparticle spacing and zigzag angle to predict the anisotropic thermal conductivity of a composite containing particle chains is presented. These results are relevant for the material design of particulate-reinforced polymer composites for advanced field-assisted additive manufacturing strategies.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3