The Effects of Geometry, Rate and Temperature on the Mode I, Mode II and Mixed-Mode I/II Interlaminar Fracture of Carbon-Fibre/Poly(ether-ether ketone) Composites

Author:

Hashemi S.1,Kinloch A.J.1,Williams J.G.1

Affiliation:

1. Department of Mechanical Engineering Imperial College of Science, Technology and Medicine Exhibition Road London, SW7 2BX United Kingdom

Abstract

A detailed study on the interlaminar failure of carbon-fibre/poly(ether-ether ketone) unidirectional composite (termed PEEK composite: "APC-2" from ICI (UK) plc) is presented. A fracture mechanics approach has been adopted and Mode I, Mixed-Mode I/II and Mode II tests have been conducted and the effects of specimen geometry, test rate and test temperature have been investigated. It is shown that for the interlaminar fracture of the PEEK composite the value of the interlaminar fracture energy, G,, generally in creases as the crack propagates through the composite, i.e., a rising "R-curve" is observed. Thus, it is not usually possible to assign one unique value to the interlaminar fracture energy, Gc, for any given Mode of loading for the PEEK composite. We have therefore defined both an initiation value, Gc(init), and a steady-state propagation value, Gc(s/s prop). The variation of these parameters with the Mode of loading, method of precracking and the test temperature is described in detail. From optical and electron microscopy studies it is shown that in Mode I the "R-curve" behaviour mainly arises from the degree of fibre-bridging increasing as the interlaminar crack grows, whilst in Mode II it appears to mainly arise from the increasing degree of microcracking and plastic deformation damage which develops around the tip of the advancing crack. The failure loci for the in terlaminar fracture of the PEEK composite have also been established, and various theo retical models to describe these data are considered.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 197 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3