Mechanical behavior of carbon nanotubes-based polymer composites under impact tests

Author:

El Moumen A1ORCID,Tarfaoui M12,Benyahia H1,Lafdi K2

Affiliation:

1. ENSTA Bretagne, IRDL – UMR CNRS 6027, France

2. University of Dayton, Dayton, USA

Abstract

This study was focused on the effect of carbon nanotubes on the impact resistance and damage evolution in laminate carbon nanotubes/epoxy composites under an impact loading. The composite panels were made from carbon fibers and carbon nanotubes randomly distributed into epoxy resin. The amount of carbon nanotubes dispersion was varied up to 4% by weight. Taylor impact tests were carried out to obtain the impact response of specimens with dimensions of 70×70×4 mm3. A projectile manufactured from a high strength and hardened steel with a diameter of 20 mm and 1.5 kg of mass was launched by a compressed gas gun within the velocity of 3 m/s, 7 m/s and 12 m/s. For the experimental test, three velocity levels were used: 3 m/s for the elastic deformation, 7 m/s for the penetration of the impactor and 12 m/s for the perforation of panels. Deformation histories and damage modes in specimens were recorded during the impact test using a high-speed camera. Processing of carbon nanotubes dispersed in laminates, testing, damage, and key findings is reported. It is observed that the impact resistance of laminates reinforced with a random distribution of carbon nanotubes increases up to 15.6% at high-strain rate compared with that of 0% of carbon nanotubes. It is also observed that the resistance to damage initiation and evolution increases with the addition of carbon nanotubes concentration.

Funder

Direction Générale de l'Armement

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3