Improving the damage tolerance of Si3N4 by forming laminate composites with refractory metals

Author:

Mitchell David J1ORCID,Mecholsky John J2ORCID

Affiliation:

1. Oak Ridge National Laboratory, Oak Ridge, TN, USA

2. Department of Materials Science and Engineering, University of Florida, Gainesville, FL, USA

Abstract

The objective of this research was to demonstrate that the damage tolerance of Si3N4 could be significantly improved by forming laminate composites with refractory metals, providing materials that undergo graceful failure, rather than the fast-fracture mechanism exhibited by monolithic Si3N4. A damage tolerant Si3N4 could be used as a ring material in an all-ceramic bearing, decreasing the chance for catastrophic failure if the ring is stressed in tension during operation. The technical approach formed a laminate composite material using alternating Si3N4-metallic layers, with both outer layers being Si3N4 to take advantage of its greater wear resistance, chemical stability, and thermal stability. The metallic layers are designed to arrest any cracks in the outer layers, thus producing a toughened Si3N4 and avoiding the catastrophic failure behavior exhibited by monolithic ceramics. The laminate composites were fabricated using a combination of tape-casting Si3N4 and metals from slurries, as well as metal foils, followed by hot pressing at 1500°C. The metallic materials employed were chromium, titanium, and tantalum. Analysis confirmed that the interfaces were well formed, and the laminates with chromium and titanium formed intermetallic compounds more readily than the composites with tantalum. The Si3N4-Ta laminates demonstrated crack deflection and bridging behavior during failure and flexural strength of 800–900 MPa. The hardness and elastic modulus of Si3N4-Ta laminates measured by nanoindentation were similar to those reported in literature. The hardness across the interface of the Si3N4-Ta composite varied according to the composition of the interface, which displayed a profile indicative of a diffusion bond.

Funder

Oak Ridge National Laboratory

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3