Failure Load Prediction by Damage Zone Method for Single-lap Bonded Joints of Carbon Composite and Aluminum

Author:

Nguyen Khanh-Hung1,Kweon Jin-Hwe2,Choi Jin-Ho1

Affiliation:

1. School of Mechanical and Aerospace engineering, Research Center for Aircraft Parts Technology, Gyeongsang National University, Jinju, Gyeongnam 660-701, Korea

2. School of Mechanical and Aerospace engineering, Research Center for Aircraft Parts Technology, Gyeongsang National University, Jinju, Gyeongnam 660-701, Korea,

Abstract

A damage zone method based on 3D finite element analysis was proposed to predict the failure loads of single-lap bonded joints with dissimilar composite-aluminum materials. To simulate delamination failure, interply resin layers between any two adjacent orthotropic laminas of composite adherend were assumed with a thickness of one-tenth of a composite lamina. Geometrically nonlinear effects due to the large rotation of the single-lap joint were included in the analysis. Analysis also considered the material nonlinearity of the aluminum adherend due to the stress exceeding yield level. Based on the experimental observation that the failure modes of the specimens were dominated by delamination and debonding, the Ye-criterion was applied to account for the out-of-plane failure of composite adherend and the Von Mises strain criterion was applied for the adhesive layer. The failure indices were multiplied to the predicted damage zone as a weight factor and the calculated damage zones were divided by an area or volume considering the joint geometry. Predicted failure loads show deviation within 18% from experimental results for nine different bonding lengths or adherend thicknesses.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3