Micro/macro approach for prediction of matrix cracking evolution in laminated composites

Author:

Ghayour Mohammadhossein1,Hosseini-Toudeshky H1,Jalalvand Meisam2,Barbero Ever J3

Affiliation:

1. Department of Aerospace Engineering, Amirkabir University of Technology, Tehran, Islamic Republic of Iran

2. Advance Composite Centre for Innovation and Science, University of Bristol, Bristol, UK

3. Department of Mechanical and Aerospace Engineering, West Virginia University, West Virginia, USA

Abstract

A computational constitutive model is presented to predict matrix cracking evolution in laminates under in-plane loading. Transverse cracks are treated as separate discontinuities in the micro-model that provides damage parameters for the macro-model. Both micro- and macro-models are implemented using finite element analysis, specifically, ANSYS, to avoid limitation of analytical micro-modeling. The computational cost of the micro-model is limited to constructing a database of micro-model predictions a priori. The macro-model is simply a finite element analysis discretization of the structure using plane stress or shell elements in ANSYS. The macro-model queries the database, which effectively becomes a constitutive model. The damage surfaces in the database are obtained from the results of large number of finite element micro-scale (unit-cell) analyses. The proposed procedure is implemented in ANSYS as a usermaterial subroutine for transverse crack initiation and propagation in symmetric cross-ply and [0r/(θ / −θ)s/0n]s laminates under in-plane loads. This method is also examined to study matrix crack evolution in tensile specimen with open hole, and the results found to be in good agreement with available experimental data.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3