Affiliation:
1. Stanford Research Institute Mento Park, Culifornia 94025
Abstract
A new and simple numerical method is presented for computing large amplitude, one-dimensional wave propagation in composite materials. The method deals with values of stress, particle velocity, and displacement that are averaged over several unit cells of the composite. The principal advantage of the method over previous macroscopic approaches is that it uses the numerical oscillations and the artificial viscosity already present in one-dimensional hydrocodes to model the geometric and dissipative dispersions of the composite material. The hydrocodes (such as PUFF or WONDY) may be used in their present form without additional dispersion relations. The method is shown to correspond to a definite physical constitutive material model. Comparisons of computational results with this method are made with those from previous models and with experimental measurements.
Subject
Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献