Creep and Physical Aging in a Polymeric Composite: Comparison of Tension and Compression

Author:

Gates Thomas S.1,Veazie David R.2,Brinson L. C.3

Affiliation:

1. Materials Division, NASA Langely Research Center, Mail Code 188E, Hampton, VA 23681-0001

2. Clark Atlanta University, Atlanta, GA 30314

3. Northwestern University

Abstract

To help address the lack of engineering data on the time-dependent behavior of advanced polymeric composites, a combined experimental and analytical research program was initiated to investigate the similarities and differences of the effects of physical aging on creep compliance of IM7/K3B composite loaded in tension and compression. Recently developed novel experimental apparatus and methods were employed to test two matrix dominated loading modes, shear and transverse, for two load cases, tension and compression. The tests, run over a range of sub-glass transition temperatures, provided material constants, material master curves and aging related parameters. Assessment of these new results indicated that although trends in the data with respect to aging time and aging temperature are similar, differences exist due to load direction and mode. An analytical model proposed previously by the authors for tension loading was used for predicting long-term tension and compression behavior using short-term data as input. These new studies indicated that the model worked equally as well for the tension or compression loaded cases. Comparison of the loading modes indicated that the predictive model provided more accurate long-term predictions for the shear mode as compared to the transverse mode. Parametric studies showed the usefulness of the predictive model as a tool for investigating long-term performance and compliance acceleration due to temperature.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3