Modeling of polyurethane/lead zirconate titanate composites for vibration energy harvesting

Author:

Rjafallah Abdelkader12ORCID,Hajjaji Abdelowahed2,Guyomar Daniel3,Kandoussi Khalid2,Belhora Fouad2,Boughaleb Yahia14

Affiliation:

1. Faculté des Sciences-El Jadida, Université Chouaib Doukkali, LPMC, Maroc

2. ENSA-El Jadida, Université Chouaib Doukkali, LabSIPE, Maroc

3. INSA-Lyon, Université Lyon, LGEF, France

4. ENS-Casablanca, Université Hassan II, Maroc

Abstract

Collecting the vibration energy existing in the surrounding environment and its transformation to a useful electrical energy in order to supply ultra-low power systems remains an emerging and promising technology. During the last decades, most of research efforts dealt with energy-harvesting technology using piezoelectric ceramics. However, those materials are stiff and limited in mechanical strain abilities. In addition, they lose their stiffness and piezoelectricity at high levels of mechanical strain. Thus, they are unsuitable for many applications in which low frequency and high strain level are required. However, electrostrictive polymers are lightweight, very flexible, have low manufacturing costs and are easy to mould into any desired shapes. These special properties led to them being considered as potential actuators. However, it is not well known that these materials also can be used for mechanical-to-electrical energy harvesting. In this research paper, electromechanical characterization of polymer/lead zirconate titanate composites was extended. The first part develops the analytical model predicting the energy harvested by polyurethane/PZT composites from electrical and mechanical properties of their constituent materials. Indeed, this model was based on the approach of representing the experimental setup with an equivalent electrical scheme. The second part focuses on the assessment of model performance by comparison between predicted and observed values. As a result, good agreements were observed between the two sets of data; in addition, the model could be used to optimize the choice of constituent materials. The last part concerns the contribution of both the electrostrictive effect and piezoelectric effect in electrical powers harvested by PU/PZT composites.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3