Compaction behaviour of flax-preforms during forming for composites

Author:

Rayyaan Rishad1ORCID,Yousaf Zeshan2ORCID,Akonda Mahmudul3,Potluri Prasad2,Kennon William Richard2

Affiliation:

1. School of Design, University of Leeds, Leeds, UK

2. School of Materials, University of Manchester, Manchester, UK

3. Textile Design Research Group, De Montfort University, Leicester, UK

Abstract

Flax reinforced composites are becoming popular in automotive and civil industries due to their green production and recycling, and for good specific strength. To manufacture composites, firstly a multi-layer of flax preforms undergo compressive pressure before resin impregnation that causes nesting, wherein, fibres of one layer fit into the adjacent layers. This debulking of the preforms under compression is an important feature that determines the fibre volume fraction of composites. In this study, four flax structures such as: nonwoven tapes, unidirectional fabric, hopsack fabric, and nonwoven tape with glass veils were investigated for compaction behaviour under pressures between 1 and 10 bars, in single and multi-layer states, in dry and wet states, under different loading cycles, and in different ply orientations (0°/0° and 0°/90°). Nesting has been calculated for single- and multi-layer stacks. It was observed that the nonwoven structures shown greater thickness reduction compared to woven structures. Nesting factor was found to be higher than 1 for the nonwoven structures under compaction, indicating lower nesting, compared to the woven structures. In terms of thickness under repeated compaction, the reduction was the highest during first compressions, compared to the 2nd and 3rd compressions, for all the structures. When wettability was examined, thickness reduction for wet plies was higher for all the structures, compared to the dry phase. Finally, a comparative study was shown to evaluate fibre volume fractions of the composites.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3