Modeling Compression Failure after Low Velocity Impact on Laminated Composites Using Interface Elements

Author:

De Moura M. F. S. F.1,Gonçalves J. P. M.1,Marques A. T.1,De Castro P. M. S. T.1

Affiliation:

1. Faculdade de Engenharia da Universidade do Porto, Departamento de Engenharia Mecânica e Gestão Industrial, Rua dos Bragas, 4099 Porto, Portugal

Abstract

Low velocity impact damage can significantly reduce the residual strength of laminated composites. This kind of damage (mostly delaminations) is very dangerous for the structures because it is not apparent to the naked eye and, in some cases, it can reduce the compressive residual strength up to 60%. In this work, a numerical model for predicting the compression failure of laminated composites containing delamination caused by low velocity impact was developed. An interface finite element, previously developed by the authors, was used. This element is compatible with twenty-seven node isoparametric hexahedral elements and enables modeling the behavior of the damaged interface, taking into account a three-dimensional stress state, the interpenetration constraint and the propagation of delamination. In order to verify the numerical model, some experimental work was done. The experimental work, performed on carbon-epoxy (04, 904)5 and (904, 04), laminates, included low velocity impact tests using a drop weight testing machine, followed by X-Ray damage characterization and compression tests using a fixture system similar to IITRI system. The numerical and experimental results were compared and good agreement was obtained.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3