Green composites using recycled plastic bags and pineapple fibers waste

Author:

Gandara Meriene1,Zanini Noelle C2,Mulinari Daniella R2ORCID,Saron Clodoaldo3,da Rosa Capri Maria1

Affiliation:

1. Chemical Engineering Department, São Paulo University (EEL/USP), Lorena-SP, Brazil

2. Department of Mechanic and Energy, State University of Rio de Janeiro (FAT/UERJ), Resende-RJ, Brazil

3. Materials Engineering Department, São Paulo University (EEL/USP), Lorena-SP, Brazil.

Abstract

This study proposes that green composites using recycled plastic bags (PEr) extruded with pineapple fiber waste (PR) from a juice industry to increase pineapple’s economic value stimulate practices that prioritize recycling and development of new materials. PEr composites were prepared using PR as a filler, using different fiber loadings of 5, 10, and 15 wt%, and the use of a coupling agent, prepared via extrusion and injection molding. The samples were investigated by Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis, inflammability, mechanical tests (tensile, impact, and shore hardness), scanning electron microscopy, and water absorption tests. FTIR results demonstrated that the addition of PR to the PEr caused a decrease in the characteristic bands of neat PEr, evidencing the chemical interactions. Thermal analysis showed that the addition PR decreased composites' thermal stability, causing relatively higher percentages of char compared to neat PEr, which increased the burning rate of composites, except for PEr/15PR and PEr/5PR-C. Green composites exhibited higher tensile modulus and hardness than PEr, but the impact tests presented a decrease in the fibers' addition to the PEr due to the reduction of toughness and resilience. SEM of fractured surface composites presented microcracks, voids, and fibers breakage in the interface. The composites showed low water absorption (up to 0.804%). The coupling agent’s use presented a low influence on the mechanical and thermal properties and a slight decrease in water absorption. These results demonstrate o potential of the reuse of plastic bags and industrial waste for green composites.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3