Polyoxymethylene/graphene nanocomposites: thermal, crystallization, melting and rheological behavior

Author:

Santos Clara Luz de Souza1ORCID,Dias Marcos Lopes2,Silva Marcelo Henrique Prado da1

Affiliation:

1. Instituto Militar de Engenharia, Brazil

2. Instituto de Macromoléculas Professora Eloisa Mano, Universidade Federal do Rio de Janeiro, Brazil

Abstract

Polyoxymethylene (POM) and graphene nanoplatelets (GNP) nanocomposites were produced and their thermal properties investigated by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Torque rheology was used to evaluate melted nanocomposites behavior. As nanofiller, two commercial GNP grades were used and characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), DSC and TGA showing great morphological and structural differences. Nanocomposites thermal stability has increased for additions up to 0.25 wt.% of both nanoparticles. However, for concentrations above 0.50 wt.%, severe matrix degradation was observed. The extent of the effect on the thermal stability of the materials also varied with the grade of GNP used and seems to be related with GNP’s extent of oxidation and defect density. The extrusion process was optimized in order to minimize secondary thermal degradation mechanisms, showing that the nanofiller nature is the most relevant factor in POM/GNP based systems. DSC analyzes showed that the addition of GNP interferes with the polymer crystallization process, alters the degree of crystallinity and increases the crystallization temperature, indicating that GNP acts as a nucleating agent for POM. The torque rheology showed that slope and level of the torque curve seems to be related with the stabilization or degradation effect observed in the thermal analysis, allowing immediate qualitative evaluation of degradation effect during extrusion process.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3