Microscale damage mechanisms and degradation of fiber-reinforced composites for wind energy applications: results of Danish–Chinese collaborative investigations

Author:

Mishnaevsky L1,Zhou HW2,Yi HY2,Peng RD2,Wang HW3,Dai GM1,Gui LL2,Zhang X2

Affiliation:

1. Department of Wind Energy, Technical University of Denmark, Denmark

2. State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, China

3. School of Mechanical Engineering, Tianjin University of Commerce, China

Abstract

Recent research works in the area of experimental and computational analyses of microscale mechanisms of strength, damage and degradation of glass fiber polymer composites for wind energy applications, which were carried out in the framework of a series of Sino–Danish collaborative research projects, are summarized in this article. In a series of scanning electron microscopy in situ experimental studies of composite degradation under off-axis tensile, compressive and cyclic loadings as well as three-dimensional computational experiments based on micromechanics of composites and damage mechanics, typical damage mechanisms of wind turbine blade composites were clarified. It was demonstrated that the damage mechanisms in the composites strongly depend on the orientation angle of the applied loading with the fiber direction. The matrix cracking was observed to be the main damage mechanism for tensile axial (or slightly off-axis axial) loading; for all other cases (off-axis tensile, compressive and cyclic tensile loadings), the interface debonding and shear control the damage mechanisms.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Micromechanical modeling of wind blade materials;Advances in Wind Turbine Blade Design and Materials;2023

2. Research strengths and future perspectives on fiber reclamation of reinforced polymers;Journal of Composite Materials;2021-07-13

3. Bio-inspired self-healing polymer foams with bilayered capsule systems;Composites Science and Technology;2020-07

4. Self-Healing Thermosetting Composites: Concepts, Chemistry, and Future Advances;Hybrid Organic-Inorganic Interfaces;2017-12-08

5. Materials for Wind Turbine Blades: An Overview;Materials;2017-11-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3