Quantifying effects of compositional variations on microstructural properties of polypropylene-wood fiber composites by melt rheology and tensile test data

Author:

Durmus Ali1ORCID,Ozcan Mehmet1,Aydin Ismail1

Affiliation:

1. Faculty of Engineering, Department of Chemical Engineering, Istanbul University-Cerrahpasa, Turkey

Abstract

In this study, melt-state rheological behavior and solid-state mechanical properties of polypropylene-wood fiber composites were investigated in detail depending on compositional variations such as (i) alkaline treatment on wood fibers, (ii) fiber size, (iii) wood fiber content, and (iv) compatibilizer/wood fiber ratio. Composite samples were prepared in a lab-scale co-rotating twin screw extruder by using a maleic anhydride grafted polypropylene as compatibilizer. Morphological features of composites were examined in a scanning electron microscopy. Viscoelastic behavior and mechanical properties of samples were analyzed by performing oscillatory tests in a rotational rheometer and a universal tensile test machine. It was found that the increasing amounts of wood fiber and compatibilizer/wood fiber ratio led to improve melt elasticity and tensile strength. It was concluded that the amount of compatibilizer into composite formulation was the most important compositional parameter compared to size and chemical treatment of wood fibers for improving the physical properties of composites. The Nicolais-Nicodemo micromechanical model showed that the increasing amount of compatibilizer yielded lower parameters which implied better interfacial adhesion between polypropylene and wood fibers.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3