Affiliation:
1. Department of Chemistry, University of the Free State (Qwaqwa Campus), South Africa
2. Center for Advanced Materials, Qatar University, Qatar
Abstract
Poly(lactic acid)/ethylene vinyl acetate blends and poly(lactic acid)/ethylene vinyl acetate/sugarcane bagasse composites were prepared by melt mixing. The lower viscosity of poly(lactic acid), the lower interfacial tension between poly(lactic acid) and sugarcane bagasse, and the wetting coefficient of poly(lactic acid)/sugarcane bagasse being larger than one, all suggested that sugarcane bagasse would preferably be in contact with poly(lactic acid). A fairly good dispersion of sugarcane bagasse was observed in the composites. Exposed fibre ends were observed in the composite micrographs, which were believed to add to the efficiency of metal adsorption. The impact properties depended more on the poly(lactic acid):ethylene vinyl acetate ratio than on the presence of sugarcane bagasse. The poly(lactic acid)/ethylene vinyl acetate blends showed two melting peaks at approximately the same temperatures as those of the neat polymers, which confirms the complete immiscibility of poly(lactic acid) and ethylene vinyl acetate at all the investigated compositions. Sugarcane bagasse-related weight loss occurred at higher temperatures for sugarcane bagasse in the composites, which could have been the result of the sugarcane bagasse being protected by the polymers, or a delay in the diffusion of the sugarcane bagasse decomposition products out of the sample. Water absorption increased with an increase in sugarcane bagasse loading in the composites. More lead was adsorbed than one would expect if the partial coverage of the fibre by the polymer is taken into account, and therefore it may be assumed that some of the lead was trapped inside the cavities in the composites and that the polymers may also have played a role in the metal complexation process, since both polymers have functional groups that could interact with the lead ions. The metal impurities underwent monolayer adsorption.
Subject
Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献