Mechanistic model for fiber crack density prediction in cyclically loaded carbon fiber-reinforced polymer during the damage initiation phase

Author:

Hiremath Chandrashekhar P1,Senthilnathan K2,Naik Niranjan K3,Guha Anirban1,Tewari Asim1ORCID

Affiliation:

1. Department of Mechanical Engineering, IIT Bombay, India

2. Advanced Composites Division, CSIR-NAL, India

3. Department of Aerospace Engineering, IIT Bombay, India

Abstract

Prediction of the fiber crack density (as one of the microstructural damages) for unidirectional fiber-reinforced polymer composite under monotonic tensile load, using strength models, has been reported in the literature. However, the microstructural damage prediction for a fiber-reinforced polymer subjected to fatigue loading is still a challenge. In this work, a progressive damage initiation model was developed to predict the fiber crack density in carbon fiber-reinforced polymer composite subjected to fatigue loading. A stochastic model was used for modeling the fiber fatigue strength. Reduction in effective life of the fiber was modeled using linear Miner’s rule. Effect of fatigue strength parameters on fiber crack density was found to be considerable compared to the effect of interface shear strength. At a low number of cycles, fiber crack density obtained from the model was in good agreement with the experimentally measured fiber crack density.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3