Affiliation:
1. Center for Composite Materials and Structure (Key Laboratory of Science and Technology for National Defence), Harbin Institute of Technology, Harbin, 150080, China.
Abstract
Three-dimensional (3D) braided composites with high specific energy absorption behavior and excellent fatigue performances are widely used in structures under cycle or impact load. A comprehensive literature survey is conducted to review the numerical analysis methods of 3D braided composites, including meso-geometry modeling, mesh generation techniques, and progressive damage models. When the 3D braided composites are manufactured during a process cycle, the braid yarn can move and becomes a ‘deviated or imperfect’ architecture. Elaborate meso-geometrical models which directly influence the precision of numerical results can be established by different methods. Different mesh generation techniques of different numerical methods, which manage to discretize the complex geometry models, are provided. An analysis of various models involved in the prediction of damage development and failure of 3D braided composites by using finite element method is presented. This study highlights the importance of recognizing the meso-structure for analyzing mechanical behavior of 3D braided composites.
Subject
Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites
Cited by
80 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献