Repeated healing of low velocity impact induced damage in orthogrid-stiffened sandwich panel

Author:

Tetteh Obed1ORCID,Mensah Patrick1,Li Guoqiang12ORCID

Affiliation:

1. Department of Mechanical Engineering, Southern University and A&M College, Baton Rouge, LA, USA

2. Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA, USA

Abstract

Herein, we present a new sandwich panel composed of a carbon fiber grid-stiffened shape memory vitrimer (SMV) core. The sandwich panels were fabricated via a pin-guided dry-weaving technology, and their impact responses were evaluated via low-velocity impact testing. The main failure mode observed after the first round of impact was the transverse cracking of the SMV matrix in the sandwich core. The healing efficiency according to the crack initiation energy (CIE) was found to be 76.5% after the first healing cycle. Even after the second healing cycle, the healing efficiency was greater than 72%. From the low-velocity impact tests, reinforcing the pure SMV core with a grid-skeleton enhanced the impact resistance significantly, that is, the crack initiation energy and peak load were increased by 64.0% and 169.0%, respectively. The results also show that smaller bay area leads to higher impact resistance. With the repeated crack healing, increased impact tolerance, and shape memory effect, it is expected that the sandwich panels will have a good possibility for usage in aerospace and automotive applications.

Funder

Aeronautics Research Mission Directorate

National Science Foundation

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3