Tensile Strength of Fiber-Reinforced Composites: I. Model and Effects of Local Fiber Geometry

Author:

Curtin W. A.1,Takeda N.2

Affiliation:

1. Department of Engineering Science and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0219

2. Center for Collaborative Research, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, Japan

Abstract

Predictions of the ultimate tensile strength of 3-dimensional fiber-reinforced composites as a function of the fiber statistical strength distribution and fiber geometry (square vs. hexagonal packing) are presented for materials in which the load transfer from broken to unbroken fibers is very localized. The predictions are obtained using a previously-developed simulation model adapted here for hexagonal fiber arrays. The model includes (1) the Hedgepeth and Van Dyke load transfer model to determine in-plane load transfer and (2) fiber slip in the longitudinal direction via a shear-lag model. Results show that, although the load transfer does depend on fiber geometry, the average composite tensile strength and the statistical distribution of strengths do not depend strongly on the fiber geometry. The size scaling of strength is then also shown to be nearly-independent of local fiber geometry. These results are physically reasonable since the critical clusters of fiber damage causing failure are observed to be larger than 15-20 fibers, so that the detailed local geometry at smaller length scales is not crucial to failure. Hence, analytic models developed previously for square fiber arrangements can be used with reasonable accuracy independent of fiber arrangements. Applications of the model to polymer matrix composites are discussed in a companion paper (Part II).

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3