Nanomechanical properties of magnesium-based hybrid composites with graphite nanofiber and alumina short fiber

Author:

Babu J. S. S.1,Kang C. G.2

Affiliation:

1. Engineering Research Center (NSDM), Pusan National University, Busan 609-735, South Korea.

2. School of Mechanical Engineering, Pusan National University, Busan 609-735, South Korea.

Abstract

In this study, an attempt was made to evaluate the nanomechanical properties of magnesium-based hybrid composites with graphite nanofibers (GNFs) and alumina short fibers (Al2O3sf) by nanoindentation. The nanoindentation was performed using continuous stiffness measurement (CSM) method with an indentation depth of 2000 nm. To find out the modulus and hardness of composites of local regions, indentation tests were carried out in different locations of the sample, such as GNFs/Al2O3sf region, Al2O3sf region, GNFs cluster, and Mg matrix. The modulus and hardness values closer to the GNFs/Al2O3sf region are higher than those of the corresponding to the other regions primarily because of a higher constraint to the localized matrix deformation during indentation. Furthermore, the presence of GNFs can act as a barrier for movement of dislocations enhancing the indentation properties. The presence of MgO/Mg17Al12 also can contribute to improve the nanoindentation properties of the present composite system.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3