Exploration relation between interlaminar shear properties of thin-ply laminates under short-beam bending and meso-structures

Author:

Huang Chunfang1,He Mingchang1,He Yonglyu1,Xiao Jiayu1,Zhang Jiangwei1,Ju Su1,Jiang Dazhi1

Affiliation:

1. Department of Materials Science and Engineering, National University of Defense Technology, China

Abstract

Carbon fiber reinforced polymer matrix composite laminates with standard thickness plies (0.125 mm) usually have weak interlaminar shear strength, meanwhile, for thin-thickness laminate structures such as aircraft wing skin, it is difficult to design a balanced laminate with the standard plies. It is a possible way to improve the interlaminar shear performance of carbon fiber reinforced polymer composite laminates and enlarge the design space of the thin-thickness structures by using thin-plies technology. In this paper, the interlaminar shear strength of carbon fiber/epoxy laminates with thin prepreg thickness subjected to short-beam bending is investigated. Unidirectional, cross-ply and quasi-isotropic laminate specimens were prepared by using prepregs with different ply thicknesses. Results show that, with decreasing of the ply thickness, higher interlaminar shear strength and smaller coefficient of variation of the data are obtained. Compared to laminates made by standard thickness prepreg, the laminates with thin-thickness prepreg exhibit more homogeneous microstructures and more regularly interlaminar shear stress distribution. This indicates that inherent anisotropy of the laminate composites is weakened in the thin-ply laminates and show pseudo-isotropic behavior. Especially in the case of ply thickness less than 0.020 mm, the interlaminar shear stress distributions of the cross-ply and quasi-isotropic laminate are almost the same with that of isotropic materials according to the classic laminate theory. On the other hand, as expected, the design space of the thin-thickness laminate structures will be increased since more ply number are allowed and superior interlaminar properties can be obtained due to the pseudo-isotropic behavior of the thin plies.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3