Damage Progression in Open-hole Tension Laminates by the SIFT-EFM Approach

Author:

Tay T. E.1,Liu G.2,Tan V. B. C.2

Affiliation:

1. Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576,

2. Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576

Abstract

Predicting and modeling progressive damage in fiber-reinforced composite structures up to and including final failure is a considerable challenge because damage in composite materials is extremely complex, involving multiple modes, such as delamination, transverse microcracking, fiber breakage, fiber pullout, etc. Indeed, damage in composites should be studied at different length scales, ranging from the micromechanical to the macromechanical specimen and structural scales. The challenge, however, is in finding theories and methodologies that will faithfully reflect the structural effects of damage progression without involving an inordinate amount of detail (and effort) in the model, so that designers and engineers will have practical tools. In this article, a novel finite element-based method for modeling progressive damage in fiber-reinforced composites is presented. The element-failure method (EFM) is based on the simple idea that the nodal forces of an element of a damaged composite material can be modified to reflect the general state of damage and loading. This has an advantage over the usual material property degradation approaches in that because the stiffness matrix of the element is not changed, computational convergence is guaranteed, resulting in a robust modeling method. When employed with a suitable micromechanics-based failure criterion, it may evolve into an engineering tool for mapping damage initiation and propagation in composite structures. Here, we have utilized the micromechanical information contained in a new strain invariant failure theory (SIFT) to guide the nodal force modification scheme to model progressive damage. As an application of the SIFT-EFM approach, we present a rational nodal force modification scheme for the modeling of progressive damage in quasi-isotropic composite laminates with open holes, subjected to remote tensile loads. The proposed nodal force modification scheme assumes loss of load-bearing capability in the direction transverse to the fibers for the case of local transverse microcracking, and assumes total loss of load-bearing capability when both transverse microcracking and fiber rupture occur. The study investigates the effect of stacking or layup sequence and shows that it is important to refine the model in the through-thickness dimension and includes nodal force modification for the out-of-plane component. It reinforces the view that damage propagation in composites is a complex three-dimensional event. When compared with experimental data, the predicted damage maps and final failure loads show correct trends and reasonable agreement.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3