Affiliation:
1. Department of Mechanical and Industrial Engineering University of Illinois Urbana, IL 61801
Abstract
The important issue of finding a relationship between a macroscopic damage variable and the process of damage accumulation within a material is addressed in this article. Monotonic and cyclic deformation behavior has been studied in a randomly distributed glass reinforced polyester matrix composite. The composite material is called sheet molding compound, abbreviated as SMC, with a short glass fiber weight of 30%. The damage evolution in this planar isotropic material is studied by continuously monitor ing axial, lateral, and specimen thickness strain components on the specimen. Based on these measurements, the damage volumetric strain was calculated that increased continu ously with cycles in load-controlled experiments. However, in the strain-controlled experi ments, where tensile stresses decayed rapidly with cycles, the corresponding damage volumetric strain reached a saturation level. Microscopic observations revealed that cracks grew along the matrix/fiber interfaces as well as the matrix/filler interfaces. Many of these cracks are normal to the specimen thickness direction. This observation is consistent with the increasing specimen thickness strain measured in the experiments.
Subject
Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献