Thermomechanical Properties during Cure of Glass-Polyester RTM Composites: Elastic and Viscoelastic Modeling

Author:

Ruiz Edu1,Trochu Francois2

Affiliation:

1. Centre de Recherches Appliquées Sur les Polymères (CRASP), Département de Génie Mécanique, École Polytechnique de l’Université de Montréal, H3C 3A7, Canada,

2. Centre de Recherches Appliquées Sur les Polymères (CRASP), Département de Génie Mécanique, École Polytechnique de l’Université de Montréal, H3C 3A7, Canada

Abstract

Resin transfer molding (RTM) is a widely used technique for the manufacturing of composite parts. A proper selection of process parameters is the key to yield successful molding results and obtain a good part. During composite consolidation, resin cure, also called chemical conversion, plays a decisive role on the final mechanical properties of the part. The modeling of resin kinetics and the evolution of composite properties during cure are crucial for process optimization. In this paper, the curing of a thermosetting polyester resin is studied by differential scanning calorimetry (DSC). A semiempirical autocatalytic model is developed to describe the kinetics of the chemical reaction. The model accounts for the maximum degree of polymerization as a function of cure temperature and induction time, i.e., the time required to attain total inhibitor degradation. The evolution of mechanical properties during resin cure for two glass-polyester composites is also studied with a dynamical mechanical thermal analyzer (DMTA) and a thermomechanical analyzer (TMA). Given that for a low chemical conversion, the elastic properties of the resin remain low, an initial degree of polymerization called after gel point (AGP) is introduced in the analysis of the mechanical properties during cure. A normalized elastic modulus is defined from the value at AGP, taken as a reference. The normalized elastic modulus is then compared to the polymerization degree. For pure resin samples, the logarithm of chemical conversion is found to be almost linearly related to the logarithm of the elastic modulus. Based on this comparison, a thermochemical model is proposed to describe the evolution of mechanical properties during the cure of composite samples with different fiber volume fractions. The viscoelastic behavior is also determined by performing stress relaxation tests with the DMTA. Resin specimens are tested for different cure states below the glass transition temperature, and master curves of stress relaxation during cure are constructed by applying the time-temperature superposition principle. The measurements depict the relaxation modulus of polyester resins as sharply affected by the degree of polymerization. Based on the experimental data, a relaxation modulus is modeled in a thermorheologically simple manner using exponential and power laws. Finally, a linear volume change model is constructed based on the TMA measurements of thermal expansion and resin shrinkage. The volume changes resulting from composite expansion-contraction and resin polymerization shrinkage are modeled as a function of temperature and degree of polymerization. The purpose of this work is to develop appropriate models of chemo- and thermomechanical behaviors of glass-polyester composites during cure. A resin cure kinetics model is developed by adding the glass transition effects to the J.L.B. model. For the mechanical properties, two new models are presented to account for the elastic and viscoelastic behaviors of the resin and the composite. Finally, the coefficients of the volume changes model are measured to account for the composite thermal expansion-contraction and resin chemical shrinkage. These models will be used in future investigations for thermal and curing optimization of composites processed by resin transfer molding.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3