The Adiabatic Thermoelastic Effect in Laminated Fiber Composites

Author:

Bakis Charles E.1,Reifsnider Kenneth L.2

Affiliation:

1. Dept. of Engineering Science and Mechanics Pennsylvania State University 227 Hammond Building University Park, PA 16802

2. Materials Response Group Dept. of Engineering Science and Mechanics Virginia Polytechnic Institute and State University Blacksburg, VA 24061

Abstract

The influence of material inhomogeneity and anisotropy on the reversible, adiabatic thermoelastic effect in laminated, continuous-fiber composites is investigated analytically and experimentally. The plane-stress solution for strains in a uniform laminate is combined with a simple micromechanics description of a fiber-reinforced lamina to approximate the nonhomogeneous strains in the fibers and matrix. The equations of anisotropic, linear thermoelasticity are then used to evaluate the temperature change in each of the microconstituents during an adiabatic deformation. The average temperature change of the surface plies of several carbon/epoxy laminates are computed and compared with experimental data obtained via differential infrared thermography. Results indicate that material parameters such as the volume fraction and thermoelastic properties of the microconstituent materials, the orientations of the laminae within the laminate, and the orientation of the lamina on the surface of observation affect the measurable thermoelastic response of a particular laminate. The experimental results suggested that the deformations of the polymeric composite test specimens were not perfectly adiabatic, yet the major trends in the measured thermoelastic emission patterns were nonetheless represented reasonably well by the proposed analysis. Based on the results, suggestions for further refinements to the analysis are proposed.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3