Modelling the effect of yarn twist on the tensile strength of unidirectional plant fibre yarn composites

Author:

Shah Darshil U1,Schubel Peter J1,Clifford Mike J1

Affiliation:

1. Polymer Composites Group, Division of Materials, Mechanics and Structures, Faculty of Engineering, The University of Nottingham, Nottingham, UK

Abstract

The structural potential of plant fibres as reinforcing agents can only be realized when the highest reinforcement efficiency is employed. Hence, aligned plant fibre composites are of interest. However, due to the short length of technical plant fibres, the reinforcement needs to be in the form of staple fibre yarns, which have a twisted structure. Although twist facilitates yarn processability, it has several detrimental effects on the composites produced from such twisted yarn reinforcements; one of which is fibre obliquity and misalignment. This results in a drastic drop in composite mechanical properties. No analytical model currently exists to accurately predict the effect of yarn twist on aligned plant fibre composite tensile strength. In this paper, a novel mathematical model is developed. The model is based on (i) a modified rule of mixtures for plant fibre composites, (ii) well-defined structure-property relationships in an idealised twisted staple fibre yarn and (iii) the Krenchel orientation efficiency factor. The developed model includes a corrected orientation efficiency factor of cos2(2 α), where α is the yarn surface twist angle. The model is validated with extensive experimental data from Goutianos and Peijs (Goutianos S, Peijs T (2003) Adv Compos Lett 12(6):237) and is found to be a near-perfect fit ( R2 = 0.960). Experimental data from other studies are also used for further verification.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 112 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3