Multifunctional carbon nanotube–epoxy composites for thermal energy management

Author:

Kaul Pankaj B1,Bifano Michael FP1,Prakash Vikas1

Affiliation:

1. Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, USA

Abstract

This paper reports development and thermal characterization of tin-capped vertically aligned multiwalled carbon nanotube array composites for thermal energy management in load-bearing structural applications. Three-omega voltage measurements are used to characterize thermal conductivity in the vertically aligned multiwalled carbon nanotube-epoxy composites as well as in its individual constituents, i.e. bulk epon-862 (matrix) and tin thin film in the temperature range 240 K–300 K, and in individual multiwalled carbon nanotubes at room temperature taken from the same vertically aligned multiwalled carbon nanotube batch as the one used to fabricate the carbon nanotube-epoxy composites. A 1-D multilayer thermal model that includes effects of thermal interface resistance is developed to interpret the experimental results. The thermal conductivity of the carbon nanotube-epoxy composite is estimated to be ∼5.8 W/m-K and exhibits a slight increase in the temperature range of 240 K to 300 K. The study suggests that morphological structure/quality of the individual multiwalled carbon nanotubes as well as thin tin capping layer are dominating factors that control the overall thermal conductivity of the thermal interface materials. These results are encouraging in light of the fact that thermal conductivity of a vertically aligned multiwalled carbon nanotube array can be increased by an order of magnitude by using a standard high-temperature post-annealing step. In this way, multifunctional (load bearing) thermal interface materials with effective through-thickness thermal conductivities as high as 25 W/m-K can potentially be fabricated.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3