Effect of processing on microstructure and electrochemical performance of silicon/disordered carbon/carbon nanotubes composites

Author:

Zhou Zhibin12,Hojamberdiev Mirabbos23,Xu Yunhua2,Liu Wengang2,Eminov Ashraf3

Affiliation:

1. School of Mechanical Engineering, Ningbo University of Technology, Ningbo, PR China

2. School of Materials Science and Engineering, Xi’an University of Architecture and Technology, Xi’an, PR China

3. Department of Silicate Materials, Tashkent Institute of Chemical Technology, Tashkent, Uzbekistan

Abstract

As an anode material for lithium-ion batteries, silicon/disordered carbon/carbon nanotubes composites were prepared by a sucrose-aided combustion method using two different mixing methods, namely mechanical stirring and ball milling. In this study, sucrose was used as a carbon source. The as-prepared composites were characterized by means of X-ray diffraction, field emission scanning electron microscopy, and electrochemical impedance spectroscopy. Both composites contain silicon and a small amount of carbon as predominating phases. The SDC-M composite prepared using mechanical stirring shows higher cycle performance (834.8 mAh/g) and first charge/discharge efficiency (72.4%) than the SDC-B composite prepared using ball milling (cycle performance of 815.2 mAh/g and first charge/discharge efficiency of 68.8%). The difference in the electrochemical performances of the SDC-M and SDC-B composites can be attributed to the distribution of carbon nanotubes and silicon particles in the disordered carbon matrices, which was greatly affected by mixing method.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3