Experimental and numerical investigation of the effect of gaps on fatigue behavior of unidirectional carbon/epoxy automated fiber placement laminates

Author:

Elsherbini Yasser Mahmoud1,Hoa Suong V1

Affiliation:

1. Department of Mechanical and Industrial Engineering, Concordia Center for Composites, Concordia University, Montreal, Quebec, Canada

Abstract

Automated fiber placement (AFP) process provides high potential to repeatability and flexibility required for manufacturing of complex parts in many industries. Performance of such parts can be influenced by AFP manufacturing induced defects such as gaps and overlaps. In this work, the effect of gaps on fatigue behavior of unidirectional carbon/epoxy laminates was investigated. Tension–tension fatigue tests were conducted on defected samples and compared to reference samples free from defects. Infrared thermography technique was used for monitoring of damage propagation during fatigue loading. Moreover, a fatigue progressive damage model (FPDM) was developed and applied to laminates containing gaps to predict fatigue damage progression and failure. The experimental results revealed that the effect of gaps depends on the maximum applied stress during fatigue. The higher is the applied stress, the higher is the reduction in fatigue life. Good agreement was found between the results of fatigue life prediction from the FPDM and the experimental results for defected specimens.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3